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Lutein may have important antioxidant actions in free-radical-mediated diseases, in addition to its well-known antioxidant
and cytoprotective effects on macula and photoreceptors. The peculiar perinatal susceptibility to oxidative stress indicates that
prophylactic use of antioxidants as lutein could help to prevent or at least to reduce oxidative stress related diseases in newborns.
Since lutein is not synthesized by humans, the intake primarily depends on diet or supplementation. Newborns receive lutein
exclusively from breast milk. Lutein supplementation in term newborns has been reported to reduce oxidative stress and increase
antioxidant capacities in the first days of life. Innovative frontiers concerning lutein supplementation are orientated toward
cardiometabolic health improvement and cognitive benefits. The safety of lutein as an antioxidant agent has been confirmed in
experimental and clinical studies, but its routine use is not recommended in perinatal period. This review summarizes what is
known about the role of lutein as an antioxidant and anti-inflammatory agent in animal model and humans.

1. Structure and Location of Lutein

Lutein is a fat-soluble pigment, belonging to the family
of carotenoids, which encompasses about 700 members in
nature. Carotenoids are divided into two classes according to
their chemical structure: the carotenes (hydrocarbons, such
as 𝛽-carotene and lycopene) and the xanthophylls (polar
compounds including oxygen atoms in their structure, such
as lutein and its structural isomer zeaxanthin) [1]. Since
xanthophyll biosynthesis occurs exclusively in plants, algae,
bacteria, and certain fungi [2], the primary intake of lutein
depends on diet or supplementation. Lutein and zeaxanthin
can be found in yellow-orange food, such as egg yolk and
corn [3], but especially in dark green vegetables such as
turnip greens, kale, parsley, spinach, and broccoli [4]. Lutein
intake fromdietary sources is strongly associatedwith plasma
concentrations [5]. Indeed, it has been shown that in humans
every 10% increase in dietary lutein corresponds to a 2,4%
increase in serum lutein concentration [6]. In human body
lutein is stored in the eye (retina, rod outer segments, and

lens) [7, 8] and other places in human body including skin
[9], cervix, brain, and breasts.

The chemical structure of lutein (C
40
H
56
O
2
) consists of

40-carbon, hence known as tetraterpenoids, with alternating
single and double carbon-carbon bonds with attachedmethyl
side groups. The presence of a hydroxyl group at both ends
of the molecule distinguishes lutein and zeaxanthin from
other carotenoids and it is responsible for the high chem-
ical reactivity with singlet oxygen [10–12]. The presence of
electrons localized over the entire length of the hydrocarbon
chainmolecules allows the neutralization of free radicals (FR)
[13]. Due to its modest aqueous solubility, lutein is usually
localized in the inner core of the cell membranes or bound
to proteins [14]. Since cell membranes are the first structures
attacked by FR, the anchor of lutein guarantees protection.
Lutein also crosses the blood-brain barrier and the pla-
centa; its presence is three times higher in breast milk and
colostrum, compared to those of other carotenoids, as a result
of an active secretion from the bloodstream.Theplasma levels
of lutein in the mother correlate with carotenoid status in
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Figure 1: Schematic representation of anti-inflammatory and
antioxidant effects of lutein.

the newborn [15]. In the neonatal period, fresh human milk
is the main source of lutein [16]. Mature human milk can
be stored safely in a freezer and heated in a microwave
oven without loss of carotenoids [17]. Lutein-enriched infant
formulas are now available. Oral supplementation represents
an alternative source that has been demonstrated to decrease
oxidative stress (OS) biomarkers and increase biological
antioxidant potential in the first days of human life [18, 19].

2. Antioxidant, Anti-Inflammatory, and
Neuroprotective Properties

Several antioxidant activities have been ascribed to lutein:
inhibition of membrane lipids peroxidation, particularly in
photoreceptors, which have plenty of polyunsaturated fatty
acids; direct antioxidant action; and anti-inflammatory and
immunomodulatory properties.

In a rat model of endotoxin-induced uveitis lutein blocks
the degradation of inhibitory kB-a from the cytosolic fraction
and prevents NF-kappa-B (NF-𝜅B) translocation, decreasing
inducible gene transcription and synthesis of inflammatory
mediators (Figure 1) [20, 21].

Paraquat and hydrogen peroxide-induced apoptosis are
neutralized by lutein in cultured retina photoreceptors pro-
moting survival and differentiation [22]. Lutein also avoids
the photooxidation of phosphatidyl-pyridinium bisretinoid
(A2-PE), which may activate a cascade of events leading to
the formation of reactive species in retinal pigment epithe-
lial cells [23]. Moreover, lutein supplementation in retinal
pigment epithelial cells prevents the proteasome inactivation
in response to photooxidation and modulates inflammation-
related genes [24].

In lipopolysaccharide- (LPS-) stimulated macrophages
line, lutein has been found to decrease intracellular hydrogen

peroxide (H
2
O
2
) accumulation by scavenging superoxide

anion and H
2
O
2
[25]. In the same study, lutein has been

found to inhibit the expression of proinflammatory genes by
suppressing nuclear factor NF-𝜅B translocation and reducing
LPS-induced secretion of tumor necrosis factor- (TNF-) 𝛼
and interleukin-1𝛽. Similar anti-inflammatory mechanisms
have been observed in vitro in both models of gastric epithe-
lial cells [26] and microglia [27]. Lutein also significantly
reduces skin inflammatory responses in ultraviolet-irradiated
keratinocytes [28].

Moreover, lutein acts as a competitive inhibitor of cytoso-
lic calcium-dependent phospholipase A

2
inhibiting arachi-

donic acid release from a macrophage cell line [29]. In
vascular smooth muscle cells, platelet-derived growth factor
and extracellular H

2
O
2
stimulation induce FR production,

which is attenuated by lutein [30].
The protective effects of lutein against protein oxidation,

lipid peroxidation, and DNA damage induced by OS have
been reported also in human lens epithelial cells where lutein
supplementation increased reduced glutathione (GSH) levels
and reduced/oxidized GSH ratio [31].

Supplementation with lutein has anti-inflammatory, neu-
roprotective, and antiangiogenic properties. In mice receiv-
ing three-month lutein supplementation, the outer nuclear
layer thickness histopathologically examined was signif-
icantly greater than in the nonsupplemented group. In
the same cohort, retinal expression of proinflammatory
mediators such as inducible nitric oxide synthase, TNF-𝛼,
cyclooxygenase-2, IL-1𝛽, and vascular endothelial growth
factor was significantly lower in supplemented mice [32].

The administration of lutein affords neuroprotective
effect against transient cerebral ischemic injury in mice since
it is able to significantly increase reduced/oxidized GSH
ratio as well as activities of antioxidant enzymes (superoxide
dismutase, GSH peroxidase, and catalase) [33].

Lutein suppresses STAT3 activation by inflammatory
cytokines and extracellular signal-regulated kinase activa-
tion, slowing DNA damage and preserving a-wave electror-
etinogram amplitude in mouse models [34]. Lutein plays
a neuroprotective role in retinal ganglion cells against N-
methyl-D-aspartate-induced retinal damage in rats [35].

Lastly, lutein treatment significantly decreased OS in
rat model of skeletal ischemia/reperfusion injury by down-
regulating oxidative stress and inflammatory mechanisms
[36].

3. Lutein and Cognitive Function

Recent papers report how lutein, predominantly accumu-
lating in the brain, is positively associated with improved
cognitive function in the elderly [37]. Macular pigment
optical density, which is a stable measure of lutein and
zeaxanthin in the retina, is consistent with better global
cognition, verbal learning and fluency, and processing and
perceptual speed in old people [38–40]. Moreover, lutein
improves cognitive scores after 4-month supplementation in
old women [41] and ameliorates visual processing speed and
visual motor behavior in young subjects [42].
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Due to the encouraging findings of a positive impact
of lutein on brain function, growing interest focuses on
identifying possible lutein functions in neurodegenerative
diseases such as Parkinson disease (PD) and Alzheimer
disease (AD). It has been suggested that lutein offers benefits
against neuronal damage occurring in AD by virtue of
its mitochondrial protective, antioxidant, and antiapoptotic
properties. In a randomized, double-blind clinical trial,
AD patients were daily supplemented for six months with
macular carotenoids (10mg meso-zeaxanthin, 10mg lutein,
and 2mg zeaxanthin) [43]. The authors found significant
improvements in visual function and increase ofmacular pig-
ment density in patients with AD after lutein supplementa-
tion while cognitive function was not influenced. In PD-mice
model, lutein has been found to protect nigral dopaminergic
neurons by enhancing antioxidant defense mechanisms and
diminishing mitochondrial dysfunction and apoptotic death
[44]. Lutein reversed the loss of nigral dopaminergic neurons
by inhibiting the activation of proapoptoticmarkers (Bax and
caspases 3, 8, and 9) and enhancing antiapoptotic marker
(Bcl-2) expressions, with significant reduction in motor
abnormalities. These findings pave the way to a beneficial
employment of lutein for neurodegenerative therapy even
if its potential protective function against these diseases
remains to be explored.

4. Lutein and the Eye

In human eye macular pigment is composed of three
carotenoids including lutein in equal concentrations to zeax-
anthin and meso-zeaxanthin [45–47]. The macula lutea is
a yellow, circular area 5-6mm in diameter, located in the
central and posterior portion of the primate retina. The
macula includes the majority of photoreceptors and it is
responsible for central vision and high-resolution visual
acuity. Neuronal lipid bilayer membranes in the retina are
especially vulnerable to oxidative damage because of expo-
sure to high oxygen concentration. Since lutein is soluble in
polyunsaturated phospholipid membrane domains, it plays
a pivotal role against OS in retinal tissues. Retinal vulner-
ability to hypoxia-ischemia is evident especially as a result
of photochemical damage, primarily located in the outer
layers of the central region of the retina, regarding both
photoreceptors and retinal pigment epithelium [48]. Labo-
ratory studies have suggested that photochemical damage is
triggered by oxidative events leading to retinal cells apoptosis
[49]. In particular, ocular exposure to sunlight, UV, and
short blue light-emitting lamps may lead to cataract and
retinal degeneration through a photooxidation reaction. In
photooxidation reactions, phototoxic chromophores in the
eye are able to absorb light but they subsequently turn to
an unstable state (singlet and then a triplet state) producing
FR [49]. Antioxidant quenchers as lutein can prevent the
phototoxic reactions damage. In fact, due to its chemical
structures with extensive conjugated bonds, lutein is able
to absorb light of the blue range wavelength (400–500 nm)
preventing light-induced retinal damage [50, 51]. Moreover,
lutein acts as an effective quencher of singlet molecular

oxygen (1O
2
) in the retina during OS conditions, preventing

lipid peroxidation and the accumulation of FR responsible
for photoreceptor apoptosis [11, 12, 52]. OS also occurs in
the inner part of the retina, particularly within axons of
retinal ganglion cells which are rich in mitochondria and
consequently sensitive to FR harmful effects compared to
neuron soma [53].

OS is themain consequence of retinal ischemiawhichwas
found to underlie diabetic retinopathy (DR) and retinopathy
of prematurity (ROP) [54]. In both DR and ROP early
ischemia due to abnormal retinal blood supply leads to
abnormal neovascularization and subsequent hemorrhages
and blindness. In preterm babies the hypoxic injury is
caused by an imbalance between an increased metabolic
demand and delayed retinal vascular development due to
the suppression of growth factor in a hyperoxic environment
[55]. DR hyperglycemia and decrease in blood flow produce
retinal ischemia [56]. Hyperglycemia induces several changes
including leukostasis, vasoconstriction, and a proinflamma-
tory state that also cause hypoxia in the retina. The early
proinflammatory changes can directly provoke hypoxia in the
retina.

Furthermore, lutein is well known to be protective against
senile cataract by influencing changes in glutathione oxi-
dation, which is responsible for the increased susceptibility
of the nucleus to oxidative damage in older lenses [57].
Protective effects of lutein have been also demonstrated in
age-related macular degeneration (AMD). AMD is a major
cause of visual impairment and blindness among people 65
years or older. It is due to the decrease in naturally protective
antioxidant systems and the increase in UV and visible
light-absorbing endogenous phototoxic chromophores that
produce reactive oxygen species [58]. Lutein counteracts
stress-induced changes in the retinal pigment epithelium
promoting tight junction repair and suppresses inflammation
both by direct scavenging and by induction of endogenous
antioxidant enzymes.

Sustained supplementation of lutein, zeaxanthin, and
meso-zeaxanthinwas demonstrated to be effective in increas-
ingmacular pigment, contrast sensitivity, and visual function
in early AMD [59]. These three carotenoids showed also
beneficial effects on visual performance in various retinal
diseases [60].

In a large multicenter double-masked clinical trial called
Age-Related Eye Disease Study 2 (AREDS2), participants
were randomly assigned to receive four different treat-
ments: (1) 10mg lutein + 2mg zeaxanthin; (2) fish oil con-
taining eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA); (3) lutein + zeaxanthin + DHA + EPA; and
(4) placebo. Lutein + zeaxanthin formulation significantly
decreased the progression to advanced AMD [61].

Interestingly, lutein, meso-zeaxanthin, and zeaxanthin
supplementation has been reported to be effective in ame-
liorating contrast sensitivity in healthy population (free of
retinal disease) by increasing retinal concentrations of these
carotenoids [62]. A recent meta-analysis by Ma et al. reports
that lutein, zeaxanthin, and meso-zeaxanthin supplementa-
tion improves macular pigment optical density in both AMD
and healthy subjects with a dose-response relationship [63].
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5. Lutein and Cardiometabolic Health

Due to its antioxidant and anti-inflammatory capacity, lutein
has been shown to exert a positive influence in promoting
cardiovascular health and decreasing the risk of Coronary
Artery Disease (CAD). Animal studies show that lutein
contributes to prevention of atherosclerosis development
by decreasing malondialdehyde and oxidized low-density
lipoprotein levels and reducing inflammatory cytokines such
as interleukin- (IL-) 10 [64]. Furthermore, in ApoE-deficient
mice supplemented with lutein for 24 weeks NADPH oxidase
was inhibited and peroxisome proliferator-activated receptor
expressionwas increased by lutein, protecting against high fat
diet-induced atherosclerosis [65].

The possible beneficial cardiovascular effect of a lutein-
rich diet in humans, particularly in preventing arterial
plaque formation, has been reported in the Atherosclerosis
Risk in Communities (ARIC) and the Carotid Ultrasound
Disease Assessment (CUDAS) studies [66, 67]. An inverse
association between plasmatic lutein and atherosclerosis is
also shown in the Los Angeles Atherosclerosis Study [68].
While the benefits regarding hypertension are uncertain
[69], lutein has been reported to counteract OS produced
aftermyocardial ischemia/reperfusion damage [70, 71]. Upon
reperfusion, neutrophils accumulate and produce an inflam-
matory response with increased generation of highly reactive
oxygen species, which are responsible for myocytes apoptosis
[70]. Consequently, limiting myocardial injury may prevent
contractile dysfunction, reducing morbidity and mortality
associated with CAD [72].

A recent meta-analysis also showed a lower risk of coro-
nary heart disease, stroke, and metabolic syndrome in high-
lutein blood concentration subjects or lutein-supplemented
subjects [73].

6. Lutein and Oxidative Stress in
Perinatal Period

Oxidative stress is defined as an imbalance between free
radicals, such as nitric oxide (NO∙), superoxide anion
(O
2

∙−), and H
2
O
2
, and antioxidants, promoting overabun-

dance of FR. The newborn is particularly susceptible to OS
due to the sudden transition from uterine life, relatively
hypoxic, to extrauterine environment, with significantly
higher oxygen concentrations. Other predisposing factors
are the rapid tissue growth and perinatal conditions char-
acterized by increased concentrations of FR and free iron,
such as chorioamnionitis, placental hypoperfusion, neonatal
hypoxic-ischemic events, inflammation, or fetal-placental
transfusion.

Several preterm newborn’s diseases, such as retinopa-
thy of prematurity (ROP), bronchopulmonary dysplasia,
intraventricular hemorrhage, periventricular leukomalacia,
necrotizing enterocolitis, oxidative hemolysis, and renal fail-
ure [74–78], recognize in OS a pathogenetic role. These
pathological conditions were grouped into a larger entity
defined as “FR disease of the newborn” [79].

Therefore one of the goals of modern neonatology is to
protect the infant fromoxidative damage by reducing the pro-
duction of FR or promoting the development of antioxidant
systems. Vitamins, FR inhibitors, and scavengers have been
used as antioxidant drugs in clinical and experimental studies
with uncertain results. Among them, lutein represents one
of the antioxidant strategies with clinical application in the
perinatal period [80]. Newborns receive lutein from breast
milk: lutein is the predominant carotenoid in mature breast
milk [81, 82]. Breast-feeding infants intake of lutein depends
on multiple factors such as maternal lutein intake, alcohol
consuming, smoking [83], and maternal body mass index;
for example, breast milk of obese mothers was found to have
lower lutein content [84]. A recent paper by Vishwanathan
et al. shows that lutein is the prevalent carotenoid in the
developing infant brain and its concentration is lower in
preterms compared to term neonates perhaps for lack of
supplementation [85].

Few data are currently available about the effects of lutein
supplementation in newborns. Lutein may play a role in
visual development, being involved in cell maturation in
the developing macula [86]. Moreover, a recent clinical trial
showed that lutein supplementation may improve neuroreti-
nal health (assessed through electroretinography recording
the voltage change across the retina after light stimulus)
in preterm newborn infants [87]. Although oral lutein is
well absorbed by preterm babies [88], it has not yet been
verified whether dietary lutein enhances visual development
in infants [89] and the mechanisms remain largely not
understood.

Since ROP is OS-related disease, a striking interest has
been focused on the possible role of lutein in preventing
it [90, 91]. ROP is a two-phase disease affecting preterm
infants. At first, the hyperoxic stimulus during oxygen sup-
plementation downregulates the vascular endothelial growth
factor with subsequent interruption of retinal vessel growth.
Afterwards, the condition of relative hypoxia of the retina,
occurring when the babies stop oxygen therapy, leads to the
abnormal proliferation of vessels (neovascularization) and
consequently OS [92].

Data regarding the possible benefits of lutein supplemen-
tation in preventing ROP are scarce and no consensus has
been achieved yet. In a multicenter, randomized-controlled
trial, the incidence of ROP in very low birth weight infants
was found not to decrease after lutein supplementation.
Similar findings were described also in another randomized-
controlled trial by Dani et al. [93]. Romagnoli et al. showed
a strong antioxidant capacity of lutein, which significantly
increased the biological antioxidant potential but not efficacy
to reduce the occurrence/severity of ROP [94]. Although a
significant linear correlation was reported between plasma
lutein concentration and total antioxidant status, supplemen-
tation with lutein orally was ineffective in enhancing biolog-
ical antioxidant capacity in preterm babies [95]. Conversely,
clinical trials in term healthy newborns indicated that orally
supplemented lutein was effective in enhancing biological
antioxidant potential and reducing lipid peroxidation [18,
19]. As demonstrated so far, lutein has a well-ascertained
antioxidant and anti-inflammatory role, while the capacity
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preventing OS-related newborn diseases remains uncertain,
probably due to the multifactorial nature of the pathological
processes or the need for higher daily doses.

Further clinical trials are needed to evaluate therapeutic
effects of lutein on preterm and term infant morbidity, par-
ticularly the free-radical-mediated diseases of the newborn.

7. Conclusions

Due to its antioxidant anti-inflammatory properties and
safety, lutein has been considered as a promising molecule
in several fields of application. Neonatal age is a vulnerable
period regarding the threatening effects of OS on the devel-
oping tissues. Neonates, especially if preterm, are defenseless
against the oxidative cellular injury because of both several
prooxidant events, such as the exposition to a relatively
hyperoxic environment with enhanced generation of FR, and
deficient antioxidant systems. Additional neonatal conditions
(inflammation, hypoxia, ischemia, and free iron release) may
also worsen OS damage. As a consequence, a great deal of
interest has been focused on antioxidant treatments. The
efficacy of lutein in counteracting oxidative damage has been
tested in human adult diseases, such as atherosclerosis, AMD,
and senile cataract.This evidence calls for a further investiga-
tion in infants. Since humans do not synthesize lutein, lutein
supplementation should be undertaken in maternal diet and
in all non-lutein-enriched formula fed newborns, lacking an
adequate dietary intake.
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